29 research outputs found

    Emergence of Topological and Strongly Correlated Ground States in trapped Rashba Spin-Orbit Coupled Bose Gases

    Full text link
    We theoretically study an interacting few-body system of Rashba spin-orbit coupled two-component Bose gases confined in a harmonic trapping potential. We solve the interacting Hamiltonian at large Rashba coupling strengths using Exact Diagonalization scheme, and obtain the ground state phase diagram for a range of interatomic interactions and particle numbers. At small particle numbers, we observe that the bosons condense to an array of topological states with n+1/2 quantum angular momentum vortex configurations, where n = 0, 1, 2, 3... At large particle numbers, we observe two distinct regimes: at weaker interaction strengths, we obtain ground states with topological and symmetry properties that are consistent with mean-field theory computations; at stronger interaction strengths, we report the emergence of strongly correlated ground states.Comment: 14 pages, 9 figure

    Cavity-Assisted Dynamical Spin-Orbit Coupling in Cold Atoms

    Get PDF
    We consider ultracold atoms subjected to a cavity-assisted two-photon Raman transition. The Raman coupling gives rise to effective spin-orbit interaction which couples atom's center-of-mass motion to its pseudospin degrees of freedom. Meanwhile, the cavity photon is dynamically affected by the atom. This feedback between atom and photon leads to a dramatic modification of the atomic dispersion relation, and further leads to dynamical instability of the system. We propose to detect the change of cavity photon number as a direct way to demonstrate dynamical instability.Comment: 5 pages, 5 figure

    Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance

    Full text link
    We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1 intercombination transition at 689 nm. Significant changes in dynamics are caused by modifications of scattering length by up to +- ?10a_bg, where the background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes in scattering length are monitored through changes in the size of the condensate after a time-of-flight measurement. Because the background scattering length is close to zero, blue detuning of the OFR laser with respect to a photoassociative resonance leads to increased interaction energy and a faster condensate expansion, whereas red detuning triggers a collapse of the condensate. The results are modeled with the time-dependent nonlinear Gross-Pitaevskii equation.Comment: 5 pages, 3 figure

    Half-quantum vortex state in a spin-orbit coupled Bose-Einstein condensate

    Full text link
    We investigate theoretically the condensate state and collective excitations of a two-component Bose gas in two-dimensional harmonic traps subject to isotropic Rashba spin-orbit coupling. In the weakly interacting regime when the inter-species interaction is larger than the intra-species interaction (g>gg_{\uparrow\downarrow}>g), we find that the condensate ground state has a half-quantum-angular-momentum vortex configuration with spatial rotational symmetry and skyrmion-type spin texture. Upon increasing the interatomic interaction beyond a threshold gcg_{c}, the ground state starts to involve higher-order angular momentum components and thus breaks the rotational symmetry. In the case of g<gg_{\uparrow\downarrow}<g, the condensate becomes unstable towards the superposition of two degenerate half-quantum vortex states. Both instabilities (at g>gcg>g_{c} and g<gg_{\uparrow\downarrow}<g) can be determined by solving the Bogoliubov equations for collective density oscillations of the half-quantum vortex state, and by analyzing the softening of mode frequencies. We present the phase diagram as functions of the interatomic interactions and the spin-orbit coupling. In addition, we directly simulate the time-dependent Gross-Pitaevskii equation to examine the dynamical properties of the system. Finally, we investigate the stability of the half-quantum vortex state against both the trap anisotropy and anisotropy in the spin-orbit coupling term.Comment: 13 pages, 18 figure

    Finite-Temperature Study of Bose-Fermi Superfluid Mixtures

    Full text link
    Ultra-cold atom experiments offer the unique opportunity to study mixing of different types of superfluid states. Our interest is in superfluid mixtures comprising particles with different statistics- Bose and Fermi. Such scenarios occur naturally, for example, in dense QCD matter. Interestingly, cold atomic experiments are performed in traps with finite spatial extent, thus critically destabilizing the occurrence of various homogeneous phases. Critical to this analysis is the understanding that the trapped system can undergo phase separation, resulting in a unique situation where phase transition in either species (bosons or fermions) can overlap with the phase separation between possible phases. In the present work, we illustrate how this intriguing interplay manifests in an interacting 2-species atomic mixture - one bosonic and another fermionic with two spin components - within a realistic trap configuration. We further show that such interplay of transitions can render the nature of the ground state to be highly sensitive to the experimental parameters and the dimensionality of the system.Comment: 9 pages, 7 figures; Accepted for publication in Phys. Rev.

    Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps

    Full text link
    We investigate theoretically the phase diagram of a spin-orbit coupled Bose gas in two-dimensional harmonic traps. We show that discrete Landau levels develop at strong spin-orbit coupling. For a weakly interacting gas, quantum states with skyrmion lattice patterns emerge spontaneously and preserve either parity symmetry or combined parity-time-reversal symmetry. These phases can be readily observed by experimentally engineering spin-orbit coupling and interatomic interactions for a cloud of 87^{87}Rb atoms in a highly oblate trap.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Modeling and analysis of the three-dimensional current density in sandwich-type single-carrier devices of disordered organic semiconductors

    Get PDF
    We present the results of a modeling study of the three-dimensional current density in single-carrier sandwich-type devices of disordered organic semiconductors. The calculations are based on a master-equation approach, assuming a Gaussian distribution of site energies without spatial correlations. The injection-barrier lowering due to the image potential is taken into account, so that the model provides a comprehensive treatment of the space-charge-limited current as well as the injection-limited current (ILC) regimes. We show that the current distribution can be highly filamentary for voltages, layer thicknesses, and disorder strengths that are realistic for organic light-emitting diodes and, that, as a result, the current density in both regimes can be significantly larger than as obtained from a one-dimensional continuum drift-diffusion device model. For devices with large injection barriers and strong disorder, in the ILC transport regime, good agreement is obtained with the average current density predicted from a model assuming injection and transport via one-dimensional filaments.

    BCS and BEC p-wave pairing in Bose-Fermi gases

    Full text link
    The pairing of fermionic atoms in a mixture of atomic fermion and boson gases at zero temperature is investigated. The attractive interaction between fermions, that can be induced by density fluctuations of the bosonic background, can give rise to a superfluid phase in the Fermi component of the mixture. The atoms of both species are assumed to be in only one internal state, so that the pairing of fermions is effective only in odd-l channels. No assumption about the value of the ratio between the Fermi velocity and the sound velocity in the Bose gas is made in the derivation of the energy gap equation. The gap equation is solved without any particular "ansatz" for the pairing field or the effective interaction. The p-wave superfluidity is studied in detail. By increasing the strength and/or decreasing the range of the effective interaction a transition of the fermion pairing regime, from the Bardeen-Cooper-Schrieffer state to a system of tightly bound couples can be realized. These composite bosons behave as a weakly-interacting Bose-Einstein condensate.Comment: 14 pages, 6 eps-figures. To be published in European Physical Journal

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model
    corecore